首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2701篇
  免费   67篇
  国内免费   104篇
工业技术   2872篇
  2023年   36篇
  2022年   75篇
  2021年   95篇
  2020年   73篇
  2019年   76篇
  2018年   72篇
  2017年   101篇
  2016年   66篇
  2015年   65篇
  2014年   130篇
  2013年   185篇
  2012年   116篇
  2011年   197篇
  2010年   151篇
  2009年   163篇
  2008年   166篇
  2007年   137篇
  2006年   138篇
  2005年   108篇
  2004年   110篇
  2003年   119篇
  2002年   77篇
  2001年   48篇
  2000年   52篇
  1999年   68篇
  1998年   47篇
  1997年   27篇
  1996年   28篇
  1995年   23篇
  1994年   25篇
  1993年   13篇
  1992年   20篇
  1991年   18篇
  1990年   10篇
  1989年   13篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
排序方式: 共有2872条查询结果,搜索用时 187 毫秒
1.
Black phosphorus (BP), as a new 2D material, is normally synthesized by a high-pressure and high-temperature (HPHT) method from white and red phosphorus, which severely hinders the further development of BP for any potential applications and leads to search for other potential applications of BP with big challenge. Herein, we develop a facile and efficient Thermal-Vaporization-Transformation (TVT) approach to prepare a highly active BP directly grown on carbon paper as the electrode for Oxygen evolution reaction (OER), showing a low onset potential of 1.45 V versus RHE. Simultaneously, the current density of BP-CP illustrates the excellent electro-catalysis stability only decreases by 3.4% after continuous operation for 10000 s. Meanwhile, the density functional theory (DFT) calculations further illustrates the P-doped carbon layer in the upper side of BP layer is actually responsible for its enhanced OER property, and the adjacent carbon atoms of the embedded P atoms are actually the active sites due to the induced local change distribution by intramolecular change transfer. Considering the facile, but efficient and scalable, TVT approach can directly synthesize BP-CP with excellent OER performance, which is promising for BP electrocatalysts used for OER in metal-air batteries, fuel cells, water-splitting devices, even other key renewable energy.  相似文献   
2.
《Ceramics International》2021,47(24):34845-34850
The interfacial delamination of electrode/ceramic multilayer structure will seriously damage the reliability of low temperature co-fired ceramic (LTCC) module in practical applications. In this work, three kinds of glasses employed in Au electrode are designed and prepared to study the abnormal expansion and delamination process in the Au/ceramic LTCC multilayer structure. The interfacial delamination in the co-fired structure is found to be attributed to the abnormal expansion of glass in respect to Au electrode at high temperature, which is originated from the enlarged closed pores during the co-firing process. This conclusion is further confirmed by co-firing the sample in a low-pressure condition. The mechanism and elimination of interfacial delamination here provides a feasible solution for the design of novel glasses in Au electrode for LTCC applications.  相似文献   
3.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
4.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
5.
《Ceramics International》2022,48(20):29882-29891
A simple strategy for preparing MgO–Al2O3–CaO-based porous ceramics (MACPC) with high strength and ultralow thermal conductivity has been proposed in this work based on the raw material of phosphorus tailings. The effects of phosphorus tailings content, carbon black addition and heat treatment temperature on the properties of MACPC were studied, and their pore-forming mechanism during sintering was revealed. The results showed that the main phase composition of MACPC was magnesia alumina spinel and calcium aluminate after sintering at 1225 °C. Furthermore, the MACPC exhibited excellent comprehensive properties when 60 wt% phosphorus tailings and 40 wt% alumina were added, whose apparent porosity was 62.8%, cold compressive strength was 14.8 MPa, and the thermal conductivity was 0.106 W/(m·K) at 800 °C. The synchronously enhanced strength and thermal insulation properties of MACPC were related to the formation of uniformly distributed micropores (<2 μm) and passages in the matrix, which originated from the decomposition of phosphorus tailings and the burnt out of carbon black during the sintering process. The preparation of MACPC with high temperature resistance and excellent mechanical and thermal insulation properties with the raw material of phosphorus tailings provided an effective method for the high-value utilization of phosphorus tailings.  相似文献   
6.
Surfactant flooding has widely been used as one of the chemically enhanced oil recovery (EOR) techniques. Surfactants majorly influence the interfacial tension, γ, between oil and brine phase and control capillary number and relative permeability behavior and, thus, influence ultimate recovery. Additives, such as nanoparticles, are known to affect surfactant properties and are regarded as promising EOR agents. However, their detailed interactions with surfactants are not well understood. Thus, in this work, we examined the influence of silica nanoparticles on the ability of surfactants to lower γ and to increase viscosity at various temperatures and salinities. Results show that the presence of nanoparticles decreased γ between n-decane and various surfactant formulations by up to 20%. It was found that γ of nanoparticles–surfactant solutions passed through a minimum at 35 °C when salt was added. Furthermore, the viscosity of cationic surfactant solutions increased at specific salt (1.5 wt.%) and nanoparticle (0.05 wt.%) concentrations. Results illustrate that selected nanoparticles–surfactant formulations appear very promising for EOR as they can lower brine/n-decane interfacial tension and act as viscosity modifiers of the injected fluids.  相似文献   
7.
Nonwoven geotextiles have been used as filters in geotechnical and geoenvironmental works for half a century. They are easy to install and can be specified to meet the requirements for proper filter performance. There are situations where a geotextile filter may be subjected to tensile loads, which may alter relevant filter properties, such as its filtration opening size. Examples of such situations are silty fence applications, geotextile separators, geotextile tubes and geotextiles under embankments on soft soils. This paper investigates the effects of tensile strains on geotextile pore dimensions. A special equipment and testing technique allowed tests to be carried out on geotextile specimens subjected to tension and confinement. The results obtained showed that the variation in filtration opening size depends on the type of strain state the geotextile is subjected, under which the geotextile pore diameter may remain rather constant or increase significantly. However, confinement reduces the geotextile filtration opening size independent on the strain mobilised. An upper bound for the filtration opening size of strained nonwoven geotextiles is introduced and was satisfactory for the geotextile products tested.  相似文献   
8.
Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.  相似文献   
9.
The fully-dense multilayer Ti-B4C composite doped with 6 wt% Al was fabricated via tape-casting and hot-pressing sintering at 1800 °C and under a uniaxial pressure of 30 MPa for 60 min. The effects of Al addition on the phase composition, interfacial microstructure and fracture toughness of the laminate composite were investigated. Based on the results of WDS and EDS, Al addition was proved to be effective on accelerating atom diffusion between Ti and B4C due to the melting pool around interface where liquid Al enriched, besides, it helps to transform the interfacial bonding method of physical to metallurgical. Finally, the improvement on toughness of Al doped composite can be attributed to the strong metallurgical bonding and hybrid fracture mode of interface. Our study may provide a potential method for producing high strength and toughness multilayer metal/ceramic composites.  相似文献   
10.
Based on the theory of free vibration of a thin plate, the acoustic-optical fiber NDE technique is proposed for the detection of interfacial debonding in FRP-retrofitted structures. A focused sound beam generated from a variable frequency loudspeaker source can be controlled to form a local vibration field at the surface of an FRP-retrofitted structure. Local vibration anomalies caused by interfacial debonding in the structure can be measured by the surface-mounted optical fiber interferometer, and thus, interfacial debonding can be detected, mapped, and quantified. Based on the results from both numerical and experimental studies, the feasibility of interfacial debonding detection in FRP-retrofitted structures with the proposed technique is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号